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Abstract

A direct method for rapid generation of combined time-propellant near-optimal trajectories of proximity maneuvers of a
chaser spacecraft required to dock a target one, with predetermined thrust history along a master direction, is presented. The
predetermined thrust history is generated by applying the Pontryagin maximum principle. The new direct method, already
implemented and tested on board real aircraft, is based on three concepts: high-order polynomials as reference functions, preset
on–off sequence of a master control, and reduction of the optimization problem to the determination of a small set of parameters.
Presetting the master control, the remaining controls act as slaves, guarantying the chaser to move along the desired path. Seeking
of the optimum strategy is transformed into a nonlinear programming problem, and then numerically solved through an ad hoc
algorithm in accelerated time scale. Examples are reported to prove the rapidness of the approach to generate a sub-optimal
docking trajectory.
Published by Elsevier Ltd.
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1. Introduction

Many researches have been performed either for
modeling [1–7] or for maneuver optimization [8] of
spacecraft rendezvous and docking, but real-time im-
plementation of the optimal control is still a difficult
task. In Refs. [9,10] the maneuvers for passing from an
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initial stable relative motion to a different final stable
one are optimized. In these works, there is no possibility
of considering generic initial conditions for the relative
position and velocity of the chaser vehicle with respect
to the target. In Ref. [8] the optimization is performed
in two stages: the first part of the trajectory is optimized
without any restriction on the chaser vehicle position,
the last phase of docking is along a fixed direction.

The importance of this research field can be found
in the most recent applications of satellites proximity
flight. A very representative example is the ATV devel-
oped by the European Space Agency. Current docking
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Nomenclature
Abbreviations and acronyms

ATV automated transfer vehicle
DMRP direct method for rapid prototyping
ISS international space station
LVLH local vertical local horizontal
NLP nonlinear programming
OP optimization parameter
PMP Pontryagin maximum principle

Symbols

aik coefficients of reference polynomi-
als

� Euler angle between the velocity
vector and the x axis in LVLH frame

g acceleration due to gravity
J, Jsc performance index, scaled perfor-

mance index
k = {x,y,z} Cartesian coordinates in LVLH

frame
m mass
N number of nodes
n order of polynomial
Osc slaves control constraint violation

scaling factor
Pk(�) polynomial reference function for

the Cartesian coordinates
Tmax maximum thrust
t time
t∗T (�∗

T) thrust-off instant (arc)
t∗∗
T (�∗∗

T ) thrust-on instant (arc)
tscaling time scaling factor
� Euler angle between the velocity

vector and the xy plane in LVLH
frame

ux , uy, uz control accelerations along the three
axis

V speed
V′ speed as function of the virtual

arc
Vsc speed scaling factor
w cost index weighting coefficient
wp penalty weighting coefficient
woverflow slaves control constraint viola-

tion penalty weighting coeffi-
cient

wspeed speed penalty weighting coeffi-
cient

xi , i = 1, . . . , 3
spacecraft mass center coordi-
nates in the LVLH frame

�T throttle position
�, �sc penalty function, scaled penalty

function
� virtual velocity along the virtual

arc
� virtual arc
��, �t j

sampling period
N vector of optimization parame-

ters
bold representing vectors
bold representing matrices

Subscripts and superscripts

(.) j quantity pertaining to the jth time
node

(.)′, (.)′′ , (.)′′′ arc derivatives

(.)̇, (.)̈, (.
···
) time derivatives

(.)̄ relative parameter

related missions, such as the space shuttle-ISS mating
or the ATV-ISS supply service, do not include any op-
timization for the rendezvous trajectories.

The proposed strategy is a direct optimization method
already used for the control of aircraft (see Ref. [11]).
The basic idea is to parameterize the trajectory in a
way that allows for independent choices of path and
velocity profiles. The proposed approach reduces the
functional problem into an NLP, with a small number
of OPs. Although this method gives near-optimal in-
stead of optimal solution, its proven robustness makes

it a good candidate for on-board real-time implementa-
tion.

Furthermore, the algorithm is fast enough to give
on-board autonomy to the spacecraft, as the trajectory
optimization may be repeated several times during the
maneuvering.

The paper is organized as follows: in Section 2 the
dynamical model used in this work is derived. Section 3
formally discusses the optimal control problem.
Section 4 is dedicated to the reference functions used for
the path parameterization. Based on the optimal control
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synthesized in Section 3, Section 5 introduces the direct
method of calculus of variations allowing to obtain pro-
totypes of optimal rendezvous trajectories analytically
in real-time. Section 6 deals with inverse dynamics to
obtain the remaining states and controls, followed by
Section 7 presenting the results of computer simula-
tions.

2. Dynamical model

This section describes the classical linear LVLH re-
ferred (see Fig. 1) model [1], used through the rest of
the paper for representing the relative motion between
two satellites flying in close orbits.

The coordinate axes convention is as follows: x points
from the attraction body to the virtual satellite, y as
the velocity vector of the satellite, and z completes the
frame. The three well-known Hill–Clohessy–Wiltshire
differential equations of motion are

{ ẍ − 2�ẏ − 3�2x = ux
ÿ + 2�ẋ = uy

z̈ + �2z = uz
(1)

with[ux
uy

uz

]
= f2 − f1 (2)

as the relative acceleration due to non-Keplerian forces
acting on the vehicles.

Dealing with linear constant coefficients equations,
i.e., a system in the form Ẋ = AX + BU, being X the
state (position and velocity: x, y, z, Vx , Vy, Vz),U the
control vector (ux , uy, uz), and

A =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3�2 0 0 0 2� 0
0 0 0 −2� 0 0
0 0 −�2 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ (3)

the linear systems theory [12] can be applied to deduce
analytical expressions for the uncontrolled and forced
evolution of the state.

Fig. 1. LVLH reference frame.

At a generic time instant t

X(t) = eA(t−t0)X(t0) +
∫ t

t0
eA(t−�) · B · U(�)d� (4)

The forcing term can be analytically solved only in par-
ticular cases. The expression for the state transition ma-
trix U(t − t0) = eA(t−t0), in normalized form, can be
found in Ref. [8].

3. Statement of the optimal rendezvous problem

In this section, a general formulation for the math-
ematical problem is given for the optimization of ren-
dezvous and docking between two satellites.

The physical system is shown in detail in Fig. 2,
where a generic maneuver for the chaser agent is rep-
resented too.

The target vehicle is assumed to be on a circular or-
bit, i.e., in the origin of the LVLH frame. It is also
assumed that some attitude control devices, such as re-
action wheels, are used on the chaser, which is the only
controlled agent, to maintain its attitude stable in the
LHLV frame. Furthermore, we assume the chaser to be
capable of generating the required thrust along the three
axis of the LVLH frame. Therefore, as far as we are con-
cerned, the chaser has only three translational degrees
of freedom, whose evolution obeys Eq. (4).

In general, it is required to satisfy the following sets
of boundary conditions:

X(t0) = X0

X(t f ) = X f = [0 0 0 0 0 0]T (5)

The chaser, then, starts from whatever current condi-
tion it has and should maneuver itself precisely into the
docking position with near-zero velocity.

Possible constraints on states and controls can be in-
cluded, expressed in general by

gLi �gi (X,U, t)�gUi , i = 1, . . . , NCON (6)
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Fig. 2. Chaser and target in LVLH frame.

gLi , gUi being, respectively, the lower and upper limits
and NCON the number of constraint functions. Accord-
ing to Bolza [13] formulation the optimization problem
for system (1) subject to Eqs. (5) and (6) consists in
choosing the control input U to minimize

J = E(X(t f ), t f ) +
∫ t

t0
f0(X(t),U(t), t)dt (7)

In particular, f0 = 1 for the time minimum problem,
f0 =u2x +u2y +u2z for the minimum propellant problem
and f0=1+w(u2x +u2y +u2z −1) for the combined case
here considered, where w is the weighting coefficient.
For the case under study, it will be E(X(t f ), t f ) = 0.

3.1. Solution for the unconstrained case

The Hamiltonian of the problem with no constraints
on states and control variables is

H = �x Vx + �yVy + �zVz + �Vx (2�ẏ + 3�2x + ux )

+ �Vy (−2�ẋ + uy) + �Vz (−�2z + uz)

+ w(u2x + u2y + u2z − 1) (8)

Moreover, the set of adjoint differential equations for
the co-state vector is [14]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�̇x = −�H

�x
= −3�2�Vx

�̇y = −�H

�y
= 0

�̇z = −�H

�z
= �2�V z⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�̇Vx = − �H

�Vx
= −�x + 2��Vy

�̇Vy = − �H

�Vy
= −�y − 2��Vx

�̇Vx = − �H

�Vz
= −�z

(9)

The adjoint vector shows a linear dynamics very similar
to that of HCW equations. More precisely⎡
⎢⎢⎢⎢⎢⎢⎣

�̇x
�̇y
�̇z
�̇Vx
�̇Vy

�̇Vz

⎤
⎥⎥⎥⎥⎥⎥⎦

= −AT ·

⎡
⎢⎢⎢⎢⎢⎣

�x
�y
�z
�Vx
�Vy

�Vz

⎤
⎥⎥⎥⎥⎥⎦ (10)

therefore, likewise Eq. (4) we can deduce

K(t) =U�(t − t0)K(t0) (11)

Refer to Ref. [8] for the normalized U�. By deriving
Eq. (8) with respect to the controls and by imposing
the derivatives to be zero gives the optimal control ex-
pression, according to Pontryagin maximum principle
(PMP)[u∗

x
u∗
y

u∗
z

]
= − 1

2w

[�Vx
�Vy

�Vz

]
(12)

By substituting Eq. (11) (the only part which is
needed, i.e., the adjoint velocity) into Eq. (12) and fi-
nally into Eq. (4), leads to the optimal unconstrained
trajectory

X(t) =U(t − t0)X(t0) + 1

2w
W(t − t0)K(t0) (13)

where W is reported in Ref. [8]. The initial condition
on the co-state can be found by matching the boundary
conditions at final time

K0 =W−1(t f − t0)2w(X(t f ) −U(t f − t0)X(t0)) (14)

3.2. Solution for the constrained case

In this case, Eq. (6) has to be taken into account
by defining an augmented Hamiltonian with respect to
Eq. (8), or Lagrangian of the Hamiltonian

H = H + µTg(X,U, t) (15)

where µT = [	1 	2 . . . . . . 	NCON
] are the Lagrangian

multipliers.
The conditions for a control sequence to be opti-

mal are (1) the derivatives with respect to U be equal
to zero and (2) the Lagrangian variables respect the
Karush–Kuhn–Tucker (KKT) conditions

	i

⎧⎪⎪⎨
⎪⎪⎩

� 0, gi (X,U, t) = gLi
= 0, gUi < gi (X,U, t)< gLi
� 0, gi (X,U, t) = gUi
unrestricted, gUi = gLi

(16)
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The typical existing limitations on engines, forbidden
regions on the state space, the presence of obstacles,
etc., exclude the possibility of an analytical solution for
the constrained case. In other words, there is no closed
form solution for the Lagrangian multipliers, as there is
for the co-state (Eq. (14)). Depending on the particular
problem one numerical method can be preferred among
the others.

For the case of limited thrust magnitude (a maximum
admissible value umax exists for the controls) Eq. (12)
can be written as

u∗
k = sign(�Vk ) min

( |�Vk |
2w

, umax

)
, k = {x, y, z} (17)

Eq. (17) highlights the well known bang-unconstrained-
bang structure for the fuel optimal case (w = 1), and
the bang–bang one for the time minimum case (w = 0).

4. Introducing the reference trajectory

This section introduces the direct method used for
the trajectory optimization in which Eq. (17) is used to
describe the behavior of one of the controls. We cannot
apply Eq. (17) to the whole control vector, as we do not
know the co-state initial conditions for the constrained
case.

By starting from Eq. (17) of previous section we will
follow the general idea of direct methods for trajectory
optimization. The shape of one of the control compo-
nents (the master) is given along a reference trajectory.
The state variables along such trajectory and the re-
maining controls (slaves) will be calculated by dynamic
inversion. The reference trajectory will then be varied
to find the “best” solution. This section describes the
reference trajectory definition and the following section
deals with the predetermined master thrust history.

To be able to separate the path choice from the speed
profile choice we use an artificial argument � (called
virtual arc) rather than time t [11]. By doing this we
are loosing independency among the control compo-
nents (in order for the spacecraft to fly along the path,
its speed vector should always be tangent to it). How-
ever, the a priori introduction of the reference trajectory
allows the a priori satisfaction of the boundary condi-
tions (Eq. (5)). It also excludes the possibility of “wild”
unpredicted trajectories during the following parameter
optimization.

In particular, each of the three chaser’s coordinates
is represented by a parameterized reference functions
of the virtual arc �, here called Px (�), Py(�), and Pz(�),
respectively.

We further consider polynomials as reference func-
tions. For instance, to represent the reference trajec-
tory as a fifth-order polynomial, we may write the
following:

P ′′
k (�) = ak2 + ak3� + ak4�

2 + ak5�
3 =

5∑
l=2

akl�l−2

k = {x, y, z} (18)

By integrating Eq. (19) we obtain

P ′
k(�) =

5∑
l=1

akl�l−1

max(1, l − 1)

Pk(�) =
5∑

l=0

akl�l

max(1, l(l − 1))
(19)

The six coefficients akl , l = 0, 1, . . . , 5 for each
k = {x, y, z} can be defined by using the following
linear matrix equation, together with the boundary
conditions:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 � f
1
2 �2f

1
6 �3f

1
12 �4f

1
20 �5f

0 1 � f
1
2 �2f

1
3 �3f

1
4 �4f

0 0 1 � f �2f �3f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ak0

ak1

ak2

ai3

ak4

ak5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k0

k′
0

k′′
0

k f

k′
f

k′′
f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

To write this matrix equation, the derivatives with
respect to time of the coordinates in Eq. (1) were con-
verted to the derivatives with respect to the new argu-
ment � by using the so-called speed factor

� = d�

dt
(21)

so that

k′ = �−1k̇

k′′ = �−2(k̈ − k̇�′) (22)

Once the coefficients of the reference functions are
determined, the reference trajectory will depend only
on the parameter � f . If additional flexibility is needed
in the definition of the trajectory we can increase the
order of the reference polynomials and use the higher-
order derivatives at both ends as additional varied
parameters. For instance, if we use sixth-order poly-
nomials instead of fifth-order polynomials we can use
the third derivatives of coordinates with respect to the
virtual arc, at both ends of the trajectory, as varied
parameters.
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5. Introducing the master control arc history

Let us first convert the system (1) to the new argu-
ment. Using the speed factor (21) we can write

x ′ = �−1Vx , V ′
x = �−1(2�ẏ + 3�2x) + �−1ux

y′ = �−1Vy, V ′
y = �−1(−2�ẋ) + �−1uy

z′ = �−1Vz, V ′
z = �−1(−�2z) + �−1uz (23)

Combining the first three equations of Eq. (23) as√
V 2
x + V 2

y + V 2
z = |V| = �

√
x ′2 + y′2 + z′2 (24)

specifically addresses the issue of independency of the
trajectory and the velocity along it. Having defined the
trajectory with respect to the virtual arc �, i.e., having
x ′, y′ and z′ defined, still leaves a possibility of vary-
ing the magnitude of the speed by varying the speed
factor �. However, the orientation of the speed vec-
tor is completely determined by this trajectory (regard-
less its argument) and can be defined by two Euler
angles as

tg� = x ′

y′ = Vx

Vy

tg � = x ′√
y′2 + z′2

= Vx√
V 2
y + V 2

z

(25)

That means that we can no longer vary all of the three
controls, ux , uy , and uz , independently. We should de-
fine one master control component (in the predominant
direction), say ux , and then define the remaining com-
ponents so that the direction of the velocity vector is
tangent to the trajectory (meaning that equalities (25)
hold).

Now, as heuristically suggested by the optimal con-
trol theory we assume the master control arc profile
to be bang-off-bang as shown in Fig. 3 (with respect
to the virtual arc � rather than time t). Obviously, the
remaining controls, uy and uz , will not be bang-off-
bang anymore. Pulse-width modulation can be used to
approximately obtain continuous accelerations in these
two channels with on–off actuators [15].

The parameter optimization routine is charted in
Fig. 4. Given the boundary conditions (5), we first de-
fine the reference polynomials Px (�), Py(�), and Pz(�)
and compute their coefficients using the boundary con-
ditions (and initial guesses on the third derivatives in
case higher than fifth-order polynomials are employed).
For the master control, we also establish a bang-off-
bang arc profile defined by several switching points.

These switching points, �i , i = 1, 2, . . . , 4, along with
the length of the virtual arc � f (and possibly values of
the higher-order derivatives of the coordinates at initial
and/or final points) form the vector of variable param-
eters N.

Next, we numerically propagate by integrating just
one instead of all of the state equations and by applying
inverse dynamics for the rest of them. The transition
between the virtual arc � and time t is made by using
the speed factor

� =
√
x ′2 + y′2 + z′2√
V 2
x + V 2

y + V 2
z

(26)

Then, we estimate the performance index J and com-
pound the aggregated penalty �. The existence of this
penalty is caused by the fact that the constraints on the
two slave controls are necessarily met, since one equa-
tion was integrated and two others are related to it via
dynamic constraints (25). Consequently the boundary
conditions for the final velocity vector components are
not satisfied.

Finally, we apply a nonlinear constrained minimiza-
tion routine to minimize the performance index and keep
the penalty within a certain tolerance 


min J
�

|�� 
 (27)

6. Computation of states, performance index and
penalty

This section covers the main algorithmic details of
the proposed optimization procedure. We start from
dividing the virtual arc � f onto N − 1 equal pieces
��=� f /(N−1) so that we have N equidistant nodes j=
1, . . . , N . All states and the master control at the first
point j = 1 (corresponding to �1 = �0 = 0) are defined.
Additionally we define �1 = 1.

Then, for each of the subsequent N − 1 nodes, j =
2, . . . , N we do the following. We compute the current
values of coordinates x, y, and z by using the polyno-
mials x j = Px (� j ), y j = Py(� j ), and z j = Pz(� j ), respec-
tively. Next, we integrate the fourth equation of system
(23) knowing the master control from the predetermined
arc history ux, j−1=ux (� j−1)

Vx, j =Vx, j−1+�−1
j−1( f1(x j−1, Vy, j−1)+ux, j−1)�� (28)

To assure the correct direction of the velocity vector
we apply relations (25) to obtain the two remaining
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Fig. 3. Control profile for the master control.

Fig. 4. Flow chart of the parameter optimization.

velocity components

Vy, j = Vx, j
y′
j

x ′
j

Vz, j =
z′j

√
V 2
x, j + V 2

x, j√
x ′2
j + y′2

j

(29)

Then we calculate the magnitude of the speed

|V | j =
√
V 2
x, j + V 2

y, j + V 2
z, j (30)

Now that we know the change in the chaser’s position
and the magnitude of speed, we may compute the time
interval between ( j − 1)th and jth nodes

�t j−1 = 2

√∑3
i=1(k(i) j − k(i) j−1)

2

|V | j + |V | j−1
,

k = {x, y, z} (31)

and the current value of the speed factor

� j = ��

�t j−1
(32)

Current time then equals to

t j = t j−1 + �t j−1 (t1 = 0) (33)

Finally, by using the last two equations of the system
(23), with an inverse dynamics approach, we find the
values of the two slave controls that yield the speed
components (29)

ux, j−1 = Vy, j − Vy, j−1

��
� j + 2�Vx, j−1

uz, j−1 = Vz, j − Vz, j−1

��
� j + �2z j−1 (34)

Once that the states and controls are computed for all
of the nodes, we estimate the performance index

J = (1 − w)tN + w

N−1∑
j=0

(u2x, j + u2y, j + u2z, j )�t j (35)
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and the penalty function

� = wp

∑
k

(Vk,N − k̇ f )
2 + (1 − wp)

×
∑
k

max
j
(0; ∣∣uk, j ∣∣−Umax)

2, k={x, y, z} (36)

where wp is the penalty weighting coefficient.
To improve the numerical convergence of the algo-

rithm, the time, the violation of the maximum thrust
limits by the slave controls and the discrepancy on final
velocity, have been re-scaled. The following modified
performance index and penalty was obtained:

Jsc = tsc(1 − w)tN + w

N−1∑
j=0

(u2x, j + u2y, j + u2z, j )�t j

�sc = wspeedVsc
∑
k

(Vk,N − k̇ f )
2

+ woverflowOsc

∑
k

max
j
(0; |uk, j | −Umax)

2 (37)

where the coefficients have been adjusted to bring the
values to the same order.

7. Simulation results

Three simulation examples are reported to show how
the algorithm is capable of generating, in a short time,
the command sequence to drive the chaser towards the
target in a sub-optimal way.

The boundary conditions are the same for the first
two test cases, which assume no out-of-plane displace-
ment in the initial condition. Only the weighting ratio
between propellant and time is changed to show how
the resulting trajectories differ from each other. In the
first case, propellant is more important to be saved than
the time required for docking (w = 0.9). While in the
second test, importance is given to the execution time
(w = 0.1).

The third simulation has the same parameters set for
case 1 (w = 0.9), but also an additional 20m of dis-
placement on the z axis at the initial time.

The numerical values used in the first two simulations
are given in Table 1. The Matlab� fmincon intended
to solve constrained nonlinear optimization problems
failed to work in our case. Therefore, the Matlab�

fminsearch function was used with five varied parame-
ters (i.e., the virtual arc length and the master control
switches). And the performance index Jsc and penalty
function �sc (Eq. (37)) blended together.

By online implementation, we mean that the com-
putational time required to produce a feasible quasi-

Table 1
Numerical values for the test cases

Parameter Units Value

Height above the Earth surface km 981.46
Initial relative position m (−60, −40, 0)
Initial relative velocity m/s (0.005, 0, 0)
Required relative final position m (0, 0, 0)
Required relative final velocity m/s (0.0005, 0, 0)
Initial and final relative accelerations m/s2 (0, 0, 0)
Maximum relative acceleration (thrust) m/s2 0.0138
Number of points for computation
along arc �

– 200

Time scaling factor 1/s 1/1000
Control constraint violation scaling
factor

(m/s2)−1 40

Final discrepancy on velocity scaling
factor

(m/s)−1 200

Table 2
Significant results of simulation test cases

Parameter Units Value

Simulation 1
Maneuver required time s 1982
Delta V m/s 0.898
Maximum control constraint violation % of max 5.9

Simulation 2
Maneuver required time s 3025
Delta V m/s 0.5
Maximum control constraint violation % of max 0

Simulation 3
Maneuver required time s 3033
Delta V m/s 0.52
Maximum control constraint violation % of max 0

optimal trajectory is a fraction of the duration of this
trajectory. In what follows the relative CPU time will be
reported for two different machines: an AMD Athlon
2600MHz processor and a Pentium III 1200MHz pro-
cessor running MATLAB/Simulink.

Finally, a cost comparison with a known optimal so-
lution found in literature (Ref. [8]) is presented. The
approach of Ref. [8] also considers continuous small
thrusters but it does not constraint any of the control
channels to behave in an on–off fashion, as in our so-
lution.

It is worth mentioning that in all the simulation runs
the fuel cost is computed as commonly done in space-
craft mission analysis, i.e., in the form

�V =
N−1∑
j=0

√
(u2x, j + u2y, j + u2z, j )�t j (38)
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Fig. 5. Results for simulation test case 1.

The main results of the test runs are reported in
Table 2.

7.1. Simulation test case 1

The initial guess on virtual arc length and po-
sition of the four switching points was � f = 5.5,
�1 = 0.007� f , �2 = 0.1� f , �3 = 0.33� f , and �4 = 0.4� f .
The resulting trajectory, with the corresponding opti-
mized values of the OPs controls behavior, velocity
history, fuel consumption and other significant param-
eters is shown in Fig. 5. The controls and velocity
are detailed, for the first 300s of the maneuver, in
Figs. 6 and 7.

The number of iterations was 91 (< 100). Note how
the final velocity is of the same order of the required
one (0.0005m/s) and the fact that there is no control
constraint violation, i.e. the slaves are respecting the

imposed bounds. Relative CPU time was in percentage
of the maneuver time 2.9% with the faster machine
(AMD Athlon 2600MHz) and 4.3% with the Pentium
III, 1200MHz.

7.2. Simulation test case 2

For this test case, where we still optimize a combi-
nation of fuel and time, but giving more importance to
the rapidity of the maneuver execution, the initial guess
was � f = 9, �1 = 0.007� f , �2 = 0.2� f , �3 = 0.5� f , and
�4 = 0.6� f . The results are shown in Figs. 8–10.

The number of iterations was 84 (< 100). For this
maneuver, more demanding than the simulation test
case 1, we obtain a control constraint violation of 5.9%
for approximately 0.25% of the entire maneuver dura-
tion, and the final velocity discrepancy is slightly higher
than in the previous case.
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Fig. 6. Zoom of the first 150s for controls and velocity, test case 1.

Fig. 7. Zoom from 150 to 300s for controls and velocity, test case 1.

Having required to minimize time, with a small con-
sideration of propellant expenditure in this case, it re-
sults in the possibility of limit violations in the slaves’
behavior. The final time is considerably lower than in
test case 1, as expected (35%, 1982s vs. 3025s). At the
same time the propellant expenditure raised from 0.5
to 0.898 units (∼80% increase). The relative CPU time
was 4.2% on AMD Athlon 2600MHz and 6% on Pen-
tium III, 1200MHz.

7.3. Simulation test case 3

An initial displacement of 20m in the z direction is
added with respect to simulation test case 1. The ini-

tial guess on virtual arc length and position of the four
switching points was � f =5.5, �1=0.007� f , �2=0.1� f ,
�3 = 0.33� f , and �4 = 0.4� f . The resulting trajectory,
with the corresponding optimized values of the OPs con-
trols behavior, velocity history, fuel consumption and
other significant parameters is shown in Fig. 11. The
3D trajectory is shown in Fig. 12. The number of iter-
ations was 89 (< 100). Note how the final velocity is
of the same order of the required one (0.0005m/s) and
the fact that there is no control constraint violation, i.e.,
the slaves are respecting the imposed bounds. Relative
CPU time is comparable with the that of simulation test
case 1.
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Fig. 8. Results for simulation test case 2.

Fig. 9. Zoom of the first 150s for controls and velocity, test case 2.
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Fig. 10. Zoom from 150 to 300s for controls and velocity, test case 2.

Fig. 11. Results for simulation test case 3.
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Fig. 12. The 3D trajectory for simulation test case 3.

7.4. Comparison with an optimal solution

The numerical solution of Ref. [8] has been imple-
mented in order to compare the cost obtained with
the presented approach. The same boundary conditions,
constraint on maximum thrust and maneuver final time
of simulation test case 3 are used to run the numerical
algorithm described in Ref. [8]. The final �V required
in the optimal solution is 0.22m/s, against 0.5m/s re-
quired by our solution. The costs are of the same order
of magnitude, and it is worth mentioning once more that
the approach of Ref. [8] does not constrain any of the
controls to behave as our on–off master; it only binds
the maximum value of the thrust components which can
vary continuously in all components.

8. Conclusions

The paper introduces an algorithm for the generation
of feasible quasi-optimal spacecraft rendezvous trajec-
tories. This algorithm is based on the synthesis of the
optimal control via the Pontryagin maximum princi-
ple. But rather than numerically solving the two-point
boundary-value optimization problem, the algorithm is
based on the direct method of calculus of variations
and explores the advantages of the inverse dynamics
approach, where only one equation is integrated. The
proposed direct method has a set of key advantages.
First of all it guarantees the boundary conditions to be
satisfied (by construction for position, numerically for

velocity), no “wild” trajectories arise during optimiza-
tion, an analytical (parametrical) representation of the
reference trajectory is possible, allowing, for instance,
to easily account for the presence of obstacles, finally,
a small number of OPs have to be considered, requir-
ing only a few iterations (< 100) to generate a solution.
A low relative CPU time with respect to the maneuver
time is needed, making possible to employ this approach
on-board a spacecraft. A comparison with an optimal
solution from available literature is also presented.

Further development of the present study will include
hardware-in-the-loop tests on the experimental setup
available at the Spacecraft Robotics Laboratory of the
Naval Postgraduate School [16].
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